首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1768篇
  免费   193篇
  国内免费   9篇
  2021年   17篇
  2020年   20篇
  2019年   22篇
  2018年   30篇
  2017年   28篇
  2016年   23篇
  2015年   58篇
  2014年   56篇
  2013年   84篇
  2012年   99篇
  2011年   97篇
  2010年   76篇
  2009年   63篇
  2008年   74篇
  2007年   70篇
  2006年   80篇
  2005年   68篇
  2004年   58篇
  2003年   59篇
  2002年   45篇
  2001年   53篇
  2000年   44篇
  1999年   49篇
  1998年   25篇
  1997年   35篇
  1996年   26篇
  1995年   27篇
  1994年   22篇
  1993年   21篇
  1992年   32篇
  1991年   35篇
  1990年   33篇
  1989年   28篇
  1988年   28篇
  1987年   21篇
  1986年   19篇
  1985年   31篇
  1984年   21篇
  1983年   21篇
  1982年   19篇
  1981年   17篇
  1980年   19篇
  1979年   27篇
  1978年   15篇
  1977年   19篇
  1976年   12篇
  1975年   11篇
  1974年   27篇
  1973年   14篇
  1969年   11篇
排序方式: 共有1970条查询结果,搜索用时 15 毫秒
61.
Despite insights on the cellular level, the molecular details of chromatin reorganization in sperm development, which involves replacement of histone proteins by specialized factors to allow ultra most condensation of the genome, are not well understood. Protamines are dispensable for DNA condensation during Drosophila post-meiotic spermatogenesis. Therefore, we analyzed the interaction of Mst77F, another very basic testis-specific protein with chromatin and DNA as well as studied the molecular consequences of such binding. We show that Mst77F on its own causes severe chromatin and DNA aggregation. An intrinsically unstructured domain in the C-terminus of Mst77F binds DNA via electrostatic interaction. This binding results in structural reorganization of the domain, which induces interaction with an N-terminal region of the protein. Via putative cooperative effects Mst77F is induced to multimerize in this state causing DNA aggregation. In agreement, overexpression of Mst77F results in chromatin aggregation in fly sperm. Based on these findings we postulate that Mst77F is crucial for sperm development by giving rise to a unique condensed chromatin structure.  相似文献   
62.
The aims of the present study were to investigate the relationship of aerobic and anaerobic parameters with 400 m performance, and establish which variable better explains long distance performance in swimming. Twenty-two swimmers (19.1±1.5 years, height 173.9±10.0 cm, body mass 71.2±10.2 kg; 76.6±5.3% of 400 m world record) underwent a lactate minimum test to determine lactate minimum speed (LMS) (i.e., aerobic capacity index). Moreover, the swimmers performed a 400 m maximal effort to determine mean speed (S400m), peak oxygen uptake (V.O2PEAK) and total anaerobic contribution (CANA). The CANA was assumed as the sum of alactic and lactic contributions. Physiological parameters of 400 m were determined using the backward extrapolation technique (V.O2PEAK and alactic contributions of CANA) and blood lactate concentration analysis (lactic anaerobic contributions of CANA). The Pearson correlation test and backward multiple regression analysis were used to verify the possible correlations between the physiological indices (predictor factors) and S400m (independent variable) (p < 0.05). Values are presented as mean ± standard deviation. Significant correlations were observed between S400m (1.4±0.1 m·s-1) and LMS (1.3±0.1 m·s-1; r = 0.80), V.O2PEAK (4.5±3.9 L·min-1; r = 0.72) and CANA (4.7±1.5 L·O2; r= 0.44). The best model constructed using multiple regression analysis demonstrated that LMS and V.O2PEAK explained 85% of the 400 m performance variance. When backward multiple regression analysis was performed, CANA lost significance. Thus, the results demonstrated that both aerobic parameters (capacity and power) can be used to predict 400 m swimming performance.  相似文献   
63.
The Bcl-2 proteins Bax and Bak can permeabilize the outer mitochondrial membrane and commit cells to apoptosis. Pro-survival Bcl-2 proteins control Bax by constant retrotranslocation into the cytosol of healthy cells. The stabilization of cytosolic Bax raises the question whether the functionally redundant but largely mitochondrial Bak shares this level of regulation. Here we report that Bak is retrotranslocated from the mitochondria by pro-survival Bcl-2 proteins. Bak is present in the cytosol of human cells and tissues, but low shuttling rates cause predominant mitochondrial Bak localization. Interchanging the membrane anchors of Bax and Bak reverses their subcellular localization compared to the wild-type proteins. Strikingly, the reduction of Bax shuttling to the level of Bak retrotranslocation results in full Bax toxicity even in absence of apoptosis induction. Thus, fast Bax retrotranslocation is required to protect cells from commitment to programmed death.  相似文献   
64.
Aims Developing plant conservation strategies requires knowledge of ecological and genetic processes underlying population dynamics. We aimed to quantify morphological and genetic differentiation among remnant populations of the iconic coco‐de‐mer palm Lodoicea maldivica. We hypothesized that limited gene flow among widely spaced populations would result in high genetic variation and large phenotypic differences among populations. Location Islands of Praslin and Curieuse (CU), Seychelles, Indian Ocean. Methods We conducted an extensive population survey and recorded morphological parameters for 447 Lodoicea in the main populations at Vallée de Mai (VM) and Fond Ferdinand (FF) on Praslin, and on CU. We collected leaf material from 180 trees in these populations for DNA genotyping using amplified fragment length polymorphisms. Results A total of 16,766 Lodoicea trees were recorded in the three populations (72.6% of Lodoicea on both islands). Lodoicea trees at VM and FF showed similar morphology, but differed in most parameters from those at CU, which were shorter, grew more slowly and produced fewer seeds. Mean overall genetic diversity was 0.337, and percentage of polymorphic loci was 91.1. Genetic diversity of the CU population was lower than that at VM and FF. There was weak genetic differentiation between CU and Praslin populations, but 99% of all genetic diversity was within populations. Main conclusions Trees on CU differed in growth and morphology from those of the two Praslin populations. These phenotypic differences, however, were not mirrored in the genetic structure of the populations. All populations were relatively genetically diverse with remarkably little differentiation among populations. This suggests that the capacity of Lodoicea to dominate across a range of habitats may be because of high phenotypic plasticity. High genetic connectivity may be maintained through long‐distance wind pollination. Given the uncertainty about the extent of underlying adaptive variation, we recommend that restoration projects avoid transferring seeds between island populations.  相似文献   
65.
PAI-1 has been shown to be both profibrotic and antifibrotic in animal models of hepatic fibrosis. Although these models have similarities to human fibrotic liver disease, no rodent model completely recapitulates the clinical situation; indeed, transaminase values in most models of hepatic fibrosis are much higher than in chronic liver diseases in humans. Here, wild-type and PAI-1−/− mice were administered AngII (500 ng/kg/min) for 4 weeks. ECM accumulation was evaluated by Sirius red staining, hydroxyproline content, and fibrin and collagen immunostaining. Induction of pro-fibrotic genes was assessed by real-time RT-PCR. Despite the absence of any significant liver damage, AngII infusion increased the deposition of hepatic collagen and fibrin ECM, with a perisinusoidal pattern. PAI-1−/− mice were protected from these ECM changes, indicating a causal role of PAI-1 in this fibrosis model. Protection in the knockout strain correlated with a blunted increase in αSMA, and elevated activities of matrix metalloproteinases (MMP2, MMP9). These data suggest that PAI-1 plays a critical role in mediating fibrosis caused by AngII and lends weight-of-evidence to a pro-fibrotic role of this protein in liver. Furthermore, the current study proposes a new model of ‘pure’ hepatic fibrosis in mice with little inflammation or hepatocyte death.  相似文献   
66.
The infection of plants with pathogens results in the induction of defence reactions as well as changes in carbohydrate metabolism. On the one hand, the pathogen attempts to manipulate the carbohydrate metabolism of the plant for its own advantage. On the other, the plant has to reorganize carbon fluxes to ensure fight against the pathogen. In order to further investigate the connection between pathogen infection and carbohydrate metabolism, the effects of two types of pathogen, biotrophic and necrotrophic, on gene expression, endogenous sugar levels and photosynthesis of tomato plants were analysed. Photosynthetic gene expression was downregulated on infection with Pseudomonas syringae and Botrytis cinerea . In contrast, expression of a sink-specific gene encoding a cell wall invertase and of defence genes was induced by both pathogens. These results provide evidence for a co-regulation of defence, sink and photosynthetic gene expression in planta in response to both types of pathogen. The brassinosteroid-containing plant restorative ComCat enhanced resistance against B. cinerea and counter-regulated the repression of photosynthetic gene expression. Endogenous sugar levels decreased and the hexose to sucrose ratio increased on treatment with B. cinerea . The application of chlorophyll fluorescence imaging revealed the spatio-temporal heterogeneity of the pathogen response. At 24 h after infection, inhibition of photosynthetic electron transport was restricted to the direct vicinity of the infection site, which was surrounded by a circle of increased photosynthetic activity. The photosynthesis of the remaining leaf was not affected at this stage. These results show the usefulness of chlorophyll fluorescence imaging for the assessment of the complex spatio-temporal changes and for the definition of the areas relevant for other types of determination, e.g. gene expression.  相似文献   
67.
1. Predation‐exclusion experiments have highlighted that top‐down control is pervasive in terrestrial communities, but most of these experiments are simplistic in that they only excluded a single group of predators and the effect of removal was evaluated on a few species from the community. The main goal of our study was to experimentally establish the relative effects of ants and birds on the same arthropod assemblage of canopy trees. 2. We conducted 1‐year long manipulative experiments in an organic citrus grove intended to quantify the independent effects of bird and ant predators on the abundance of arthropods. Birds were excluded with plastic nets whereas ants were excluded with sticky barriers on the trunks. The sticky barrier also excluded other ground dwelling insects, like the European earwig Forficula auricularia L. 3. Both the exclusion of ants and birds affected the arthropod community of the citrus canopies, but the exclusion of ants was far more important than the exclusion of birds. Indeed, almost all groups of arthropods had higher abundance in ant‐excluded than in control trees, whereas only dermapterans were more abundant in bird‐excluded than in control trees. A more detailed analysis conducted on spiders also showed that the effect of ant exclusion was limited to a few families rather than being widespread over the entire diverse spectrum of spiders. 4. Our results suggest that the relative importance of vertebrate and invertebrate predators in regulating arthropod populations largely depends on the nature of the predator–prey system.  相似文献   
68.
69.
Single-molecule force spectroscopy with optical tweezers has emerged as a powerful tool for dissecting protein folding. The requirement to stably attach “molecular handles” to specific points in the protein of interest by preparative biochemical techniques is a limiting factor in applying this methodology, especially for large or unstable proteins that are difficult to produce and isolate. Here, we present a streamlined approach for creating stable and specific attachments using autocatalytic covalent tethering. The high specificity of coupling allowed us to tether ribosome-nascent chain complexes, demonstrating its suitability for investigating complex macromolecular assemblies. We combined this approach with cell-free protein synthesis, providing a facile means of preparing samples for single-molecule force spectroscopy. The workflow eliminates the need for biochemical protein purification during sample preparation for single-molecule measurements, making structurally unstable proteins amenable to investigation by this powerful single-molecule technique. We demonstrate the capabilities of this approach by carrying out pulling experiments with an unstructured domain of elongation factor G that had previously been refractory to analysis. Our approach expands the pool of proteins amenable to folding studies, which should help to reduce existing biases in the currently available set of protein folding models.  相似文献   
70.
Invasive alien plants affect the functioning of ecosystems by altering plant–animal interactions, such as pollination, which may impede natural regeneration of native plant species. In Mauritius, we studied the reproductive traits and pollination ecology of the rare endemic cauliflorous tree Syzygium mamillatum in a restored forest (all alien plant species removed) and an adjacent unrestored area (degraded by alien plants). Flowers of S. mamillatum were only visited by generalist bird species. Although the initial number of flower buds per tree in the restored forest tended to be higher than that of trees in the unrestored area, final fruit set and the number of seeds per fruit were lower in the restored forest. This corresponded with lower bird visitation rates in the restored area. Additionally, during budding stage, most trees were severely attacked by lepidopteran larvae, and bud loss through herbivory was higher in the restored forest. Thus, the difference in reproductive performance of S. mamillatum between the two localities was caused by contrasting herbivore attack and bird visitation behavior in restored and unrestored areas. Our findings illustrate the importance of restoration efforts in mimicking the original physical structure of habitats and interaction structure of interspecific relationships, and the difficulty of doing so given the imperfect knowledge and the reality that many native species have become locally extinct and replaced by exotic species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号